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Abstract

An idealized synthetic database loosely resembling 3-channel passive microwave ob-
servations of precipitation against a variable background is employed to examine the
performance of a conventional Bayesian retrieval algorithm. For this dataset, algorithm
performance is found to be poor owing to an irreconcilable conflict between the need5

to find matches in the dependent database versus the need to exclude inappropriate
matches. It is argued that the likelihood of such conflicts increases sharply with the
dimensionality of the observation space of real satellite sensors, which may utilize 9 to
13 channels to retrieve precipitation, for example.

An objective method is described for distilling the relevant information content from10

N real channels into a much smaller number (M) of pseudochannels while also reg-
ularizing the background (geophysical plus instrument) noise component. The pseu-
dochannels are linear combinations of the original N channels obtained via a two-stage
principal component analysis of the dependent dataset. Bayesian retrievals based on
a single pseudochannel applied to the independent dataset yield striking improvements15

in overall performance.
The differences between the conventional Bayesian retrieval and reduced-

dimensional Bayesian retrieval suggest that a major potential problem with conven-
tional multichannel retrievals – whether Bayesian or not – lies in the common but of-
ten inappropriate assumption of diagonal error covariance. The dimensional reduction20

technique described herein avoids this problem by, in effect, recasting the retrieval
problem in a coordinate system in which the desired covariance is lower-dimensional,
diagonal, and unit magnitude.
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1 Introduction

Satellite remote sensing entails the indirect determination of a property, or set of prop-
erties, of the environment based on measurements of top-of-the-atmosphere radiances
at appropriate wavelengths. Conceptual frameworks for undertaking satellite retrievals
range from simple ad hoc methods to the iterative inversion of complex physical models5

of observed radiances.
For remote sensing problems involving highly non-linear and/or difficult-to-model re-

lationships between observation vectors and environmental states, it is increasingly
common to rely on so-called Bayesian estimation methods. One of the principal ar-
eas of application of Bayesian methods (but by no means the only one) has been in10

the area of precipitation retrieval from passive and/or active microwave observations
(Evans et al., 1995; Olson et al., 1996, 2006; Haddad et al., 1997; Marzano et al.,
1999; Bauer et al., 2001; Kummerow et al., 2001, 2011; Tassa et al., 2003; Di Michele
et al., 2005; Grecu and Olson, 2006; Chiu and Petty, 2006; Viltard et al., 2006; Seo
et al., 2008).15

This paper has two purposes: (a) to draw attention to certain practical limitations of
Bayesian algorithms as typically implemented, and (b) to describe and demonstrate an
objective method of dimensional reduction that substantially improves the robustness
of Bayesian retrievals in certain remote sensing applications.

The Bayesian methodology is examined here in the context of idealized retrievals20

of surface precipitation rate. However, the issues raised, and their proposed solution,
should have considerably broader applicability.

1.1 Bayesian estimation

Bayesian retrieval algorithms purport to obtain estimates of an environmental vari-
able (e.g. rain rate) via application of Bayes’ Theorem (Bayes and Price, 1763). In25

the present context, Bayes’ Theorem states that the posterior probability distribution
function (PDF) of a desired variable R conditioned on an observation vector x is given
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by

P (R |x) ∝ P (x|R)P (R) (1)

where P (R) is the unconditional (prior) probability density function (PDF) of the scalar
variable R to be estimated and P (x|R) is the multidimensional PDF of the observation
vector x conditioned on a specific value of R.5

With only one known exception (Chiu and Petty, 2006), the prior joint and marginal
PDFs are represented not as the continuous functions implied by Eq. (1) but rather via
a large database of candidate solutions with associated observed or modeled multi-
channel radiances. This variation has been aptly called a Bayesian Monte Carlo (BMC)
method (L’Ecuyer and Stephens, 2002), although that more precise terminology does10

not seem to have achieved wider usage.
Moreover, while a true Bayes Theorem-based retrieval should in principle be able to

yield a complete posterior PDF of R as demonstrated by Chiu and Petty (2006), it is
typical in practice to extract only an expectation value based on a weighted average of
the small set of discrete solution vectors in the database that approximately match the15

observations.

1.2 Practical limitations

Bayes Theorem has the advantage of providing a rigorous and complete statistical ba-
sis for optimal satellite retrievals, provided only that the requisites PDFs are known.
However, this advantage can only be fully realized only under fairly restrictive condi-20

tions:

– The prior joint distribution of environmental variables must be well-characterized
over the full spectrum of possibilities and with adequate sampling density relative
to the assumed observation error (L’Ecuyer and Stephens, 2002).

– The database must be small enough to be efficiently searchable, a requirement25

that stands in conflict with the previous one.
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– The sensor observations attached to each candidate state must be physically re-
alistic not only on a channel-by-channel basis but also in terms of its consistency
with the high-dimensional manifold encompassing actual observations. This con-
sistency can be difficult to achieve when physical model calculations, rather than
actual observations, supply the radiance vector (Panegrossi et al., 1998).5

– The observation/modeling error covariance must be correctly specified in order
to optimize both the selection and the weighting of candidate solutions (L’Ecuyer
and Stephens, 2002).

This paper is motivated by the observation that all of the above challenges increase
exponentially as the dimensionality of the search space increases. For example, imag-10

ine that a mere 104 solution vectors evenly distributed throughout a 3-dimensional ob-
servation space is minimally adequate to characterize the prior distribution of environ-
ment states and their associated observation vectors. Depending on interchannel and
intervariable correlations, up to 1012 candidate solutions might be required to achieve
comparable density when Bayesian retrievals are directly based on the radiance obser-15

vations of, say, a nine-channel instrument like the Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI; Kummerow et al., 1998).

Even if the overall density seems adequate, infrequent combinations of environmen-
tal variables – e.g. those associated with a severe storm or hurricane – will still tend
to appear as outliers in an inadequately populated corner of channel space, in which20

case either no suitable match may be found at all or else the match sample may be
small and potentially nonrepresentative.

Moreover, it usually proves difficult to confidently specify the optimal match or weight-
ing criteria in a high-dimensional space. Formally, one usually specifies an error co-
variance that serves as the basis for assessing consistency between an observation25

vector x and a candidate solution in the database. In practice, the full covariance is
rarely known, and only an assumed per-channel error variance is usually specified.
This is the approach taken by the current version of the Goddard Profiling (GPROF)
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algorithm for TRMM (Kummerow et al., 2011), for example, among many other retrieval
and assimilation schemes.

Note further that while the formal error covariance follows from an analysis of model
and/or instrument error alone, this specification is only useful if the database is densely
populated relative to that expected error. When the density is low, as is especially the5

case for less common scenes, one must often either arbitrarily expand the the search
neighborhood until one or more nominal matches are found or else flag the retrieval for
that observation as “missing” owing to a failure to find matches within the prescribed
tolerance.

Finally, while the neighborhood that constitutes a match in observation space should10

in general be an arbitrarily oriented hyperellipsoid with appropriate major and minor
axes, as specified by the true error covariance matrix, the convenient but arbitrary sub-
stitution of a diagonal covariance matrix automatically – and usually inappropriately
– implies an ellipsoid or spheroid with principal axes perfectly aligned with channel
coordinate axes. The retrieval algorithm may thus include inappropriate candidate so-15

lutions and/or exclude appropriate ones, leading to significant retrieval biases under
some conditions, especially when the correct solutions lie in close proximity to incor-
rect solutions. As will be demonstrated below, the inappropriate assumption of diagonal
covariance can severely degrade retrieval performance.

1.3 Objectives20

In this paper, we demonstrate some important practical limitations of the Bayesian
method as typically applied to satellite retrievals. Rather than use real satellite data, we
construct an idealized synthetic database comprising only three simulated “channels”
and associated with a single scene variable, “rain rate.” These channels are subject
to considerable variability due to prescribed background noise. As is characteristic of25

passive microwave observations of precipitation over land, the signal due to “rain rate”
is intentionally weak in absolute magnitude relative to the background noise but with
a spectral component that is distinct from the background variability.
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We first show that conventional Bayesian retrievals in 3-channel space can lead
to nearly useless estimates owing to match failures and/or over-averaging. We then
demonstrate a technique for reducing the dimensionality of the database and for ob-
taining significantly more robust retrievals from the same data and using the same
Bayesian framework. In effect, we derive a smaller number of “pseudochannels” – i.e.5

linear transformations of the original channels or simple functions thereof – that retain
most of the desired signal while rejecting a large part of the background noise. What
remains of the background noise is decorrelated and scaled to unit variance.

Note that while the benefits of appropriate dimensional reduction should hold in gen-
eral for any database-type retrieval problem, the particular dimensional reduction algo-10

rithm described below is most directly applicable to semi-continuous variables like rain
rate or cloud liquid water path for which admissible values are either exactly zero or
positive.

2 Synthetic database

A Gaussian pseudorandom number generator was used to create 20 000 vectors15

of three-channel “background brightness temperatures” with prescribed mean x =
(220,240,250) and covariance

S =

 506 81 −205
81 173 140

−205 140 269

 . (2)

These statistical properties are arbitrary apart from the desire that the synthetic data
lie in an oblique 3-D plane with added uncorrelated random noise having unit variance.20

For 10 % of these scenes, a non-zero “rain rate” R was assigned. This rain rate obeys
a half-Gaussian (positive only) distribution with unit standard deviation. The unique
spectral signature of the rain is described by a unit vector â = (0.366, −0.682, 0.633),
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so that raining scenes are simply non-raining scenes with an added brightness tem-
perature perturbation given by R â. This idealized rain signal is of course considerably
cleaner than that encountered in real satellite observations and serves our purpose of
highlighting retrieval issues associated with the Bayesian framework as as opposed to
the physics.5

This dataset is split evenly into a “training dataset” (TRAIN) and a “validation dataset”
(VAL), each consisting of 10 000 “observations.” Our objective is to utilize the TRAIN
data to implement a Bayesian algorithm capable of achieving reasonable performance
when applied to the independent VAL data. Because the two data sets are statistically
identical, problems we identify will be associated exclusively with issues relating to10

sampling density and dimensionality, not to representativeness or modeling error.
Two-dimensional scatter plots for each possible pair of channels are depicted for the

TRAIN data in Fig. 1. The most important feature revealed in these plots is that no two
channels are sufficient by themselves to distinguish between raining and non-raining
scenes. It cannot even be discerned from these plots whether the raining scenes are15

in any way separable from the non-raining scenes, let alone whether it is possible to
reliably estimate rain rate using all three channels.

In fact, the background noise in this demonstration is confined to a 3-dimensional
plane (apart from 1 K Gaussian noise), and the subtler rain “signature” â has, by design,
a component normal to that plane. There is thus indeed some degree of separation in20

3-channel space between the raining and non-raining pixels, though it would be visible
in a 2-D plot only under an appropriate rotation relative to the original channels. The
question addressed in the next section is whether a conventional Bayesian retrieval
algorithm that relies on matching of observations in 3-channel space and employing
the usual assumption of diagonal error covariance can successfully pull the relatively25

weak rain signal out of the much larger-magnitude background noise.
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3 Bayesian retrieval in channel space

3.1 Method

We begin with a straightforward retrieval method conceptually similar to that currently
used for TMI and envisaged as well for the future GPM Microwave Imager. The TRAIN
data serves as a database that is searched for scenes that match a given observation5

vector to within a specified tolerance. Specifically, each prospective match is assigned
a weight given by w = exp(−s), where

s =
∑
i

(
xi −x′

i

σi

)2

, (3)

where xi is the observation from the i th channel, x′
i is the corresponding value for the

database entry, and σi is a channel-dependent uncertainty that captures modeling error10

and/or observation error. As previously noted, a rigorous calculation of s should actually
be based on a full error covariance matrix S, of which σ2

i are the diagonal elements,
but this is typically not done. For the idealized experiments described herein, we take
σ to have the same value for all “channels.”

Consistent with the current implementation of the Goddard Profiling algorithm15

(GPROF; Kummerow et al., 2001, 2011) for the TRMM Microwave Imager, we admit
only matches for which w > 0.01. The retrieval for a given observation vector is then
given by

R̂ =

∑P
j=1wjR

′
j∑P

j=1wj

, (4)

where P is the number of qualifying matches.20

For a given observation vector x, we require at least N = 1 to have any valid re-
trieval at all; larger N will improve the statistical representativeness of the retrieval and
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may permit error statistics to be derived as well. In principle, we can always increase
σ until sufficient matches are found, but the benefits of increased sample size must
be weighed against the loss of retrieval quality that results from treating increasingly
dissimilar scenes as “matches.”

As noted earlier, the problem of finding matches within a sufficiently small neighbor-5

hood of the observation is dependent on the local density of the training sample in ob-
servation space. The higher-dimensional the observation space, the larger the training
database must be to ensure adequate density in any given neighborhood. Moreover,
extreme values of the variable to be retrieved will usually occupy the most sparsely
populated regions in channel space.10

3.2 Application to TRAIN data

It is instructive to apply the above algorithm to the same observations stored in the
TRAIN database, not only as a sanity check but to illustrate an important consideration
in the choice of σ. We know that even an arbitrarily small value of σ will still yield an ex-
act match in every case, because each observation passed to the algorithm is present15

in the database. Of interest here is what happens when the tolerance is loosened so
as to find additional matches.

Figure 2 depicts scatter plots of the retrieved versus actual “rain rate” for four different
choices of σ. For σ = 0.03 (Fig. 2a), the agreement is essentially perfect, because for
each observation, exactly one match is found, and that match is the observation itself.20

But for σ > 0.1 (Fig. 2b–d), there is an increasing tendency toward underestimation of
the true rain rate, because now dissimilar scenes are being included in the average,
most of which have a significantly different (usually zero) rain rate. For σ = 1.0 (Fig. 2d),
the result is nearly useless on a pixel-by-pixel basis, even though the mean rain rate
for all pixels will still be correct.25

The initial conclusion to draw from this comparison is that even when exact matches
to all observations are available in the database, the use of an inappropriately large
value for σ will seriously degrade the retrievals.
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3.3 Application to VAL data

We now apply the same algorithm to the independent VAL data. Statistically, these
data are identical to those in the TRAIN database, but there likely to be very few exact
matches. Consequently, when σ = 0.03, the match failure rate is an unacceptably large
94 % (Fig. 3a). Moreover, the failure rate is highest by far for the non-zero rain rate5

scenes, since these are more thinly spread in channel space.
When σ = 0.1, the match failure rate is still 40 %, but at least there is some sem-

blance of skill in the retrieval for those pixels that do have matches (Fig. 3b). Again,
the failure rate specifically for precipitating pixels is far higher, so that an average of
only the successfully matched observations would yield a severe underestimate of the10

true mean value of “rain rate”. Increasing σ further eliminates most of the match fail-
ures but leads to the same collapse of retrieval skill and systematic low bias previously
shown for the dependent (TRAIN) data set. In summary, there is no single value of
σ that yields an acceptable tradeoff between match rate and algorithm performance,
despite our reliance on a database of 10 000 entries populating a mere 3-dimensional15

observation space.
The GPROF algorithm, to give one example, recognizes this problem and undertakes

multiple passes through the data base. If a match is not found for a given value of σ,
the value is doubled and the search repeated. In this way, it is ensured that matches
will eventually be found for all observations, albeit with very loose tolerances for the20

rarest combinations of channel values.
Figure 4 illustrates the results of this procedure applied to our synthetic database.

There are now no match failures, but the quality of the retrieval remains poor, with
a great many underestimated values of larger “rain rates” and a similar number of non-
zero retrievals where there the true value is zero. Less apparent is that this procedure25

does not even conserve the ensemble averaged “rain rate” for the entire data set –
the average for all 10 000 points is only 39 % of the true value. This is because non-
raining scenes typically find matches for low values of σ so that only other non-raining
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(or low-raining) scenes are included in the retrieval, while high rain rates in the tail of
the distribution typically require large σ with the consequent incorporation of poorer
matches (typically lower rain rates) into the retrieval.

3.4 Preliminary assessment

In view of the poor performance of the Bayesian scheme in the above demonstration,5

one might reasonably ask whether the signal-to-noise ratio is simply too poor in the
synthetic data set for any retrieval method to yield high-quality results, at least using
a solution database comprising only 10 000 entries.

In fact, it will be shown shortly that retrieval performance is markedly improved simply
by first applying an operator that retains sensitivity to the rain rate signal while rejecting10

most of the background noise and by using the single resulting pseudochannel as an
index into the TRAIN database.

4 Dimensional reduction

4.1 General goals

In the present context, the process of dimensional reduction entails the following:15

1. Starting with the original set of sensor channels, find linear transformations that
normalize and decorrelate the temporal and spatial background variabilitity (geo-
physical noise). That is, we want our transformed channels to have unit variance
and zero cross-correlation when only scenes containing no rain are considered.

2. From those first-stage transformed channels, perform a second linear transforma-20

tion that collects most of the sensitivity to the desired variable (e.g. rain or cloud)
into a significantly smaller number of pseudochannels.
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3. Utilize those pseudochannels in place of the larger number of original channels in
a lower-dimensional Bayesian retrieval scheme.

Note that while principal component analysis (PCA) is utilized in the first two steps
and is, in general, a common method for dimensional reduction, a single-stage PCA
decomposition of a data set does not accomplish either of the two steps on its own.5

4.2 Details

4.2.1 Stage 1

The following procedure is applied to pixels for which the variable y to be retrieved is
zero. In the present case, this condition is satisfied by 90 % of the database, or 9000
observations.10

First, we compute the mean 〈X〉 and the covariance Sx for the rain-free pixels. From
Sx, we then compute the eigenvectors Ex and eigenvalues Λx. We define the first-stage
transformed channels y via

yi = λ−1/2
x,i [(x− 〈x〉)TEx]i . (5)

15

That is, we take the projection of (x− 〈x〉) onto the i th eigenvector and then scale by
square root of the eigenvalue to obtain unit variance. With appropriate definitions of the
coefficient matrix A, the above operation reduces to

y = A(x− 〈x〉). (6)
20

〈y〉 = 0 and Sy = I for the set of transformed channels when observing the background
only, but they otherwise retain all of the same information as found in the original x,
Thus, we may now conveniently treat the total background noise (instrument plus geo-
physical) as having unit variance and zero correlation between transformed channels
y.25
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4.2.2 Stage 2

We now apply Eq. (6) to the 10 000 precipitating scenes yr with R > 0. Unlike the case
for rain-free scenes, the variance in each transformed channel yi is now larger than
unity owing to the added effects of precipitation on top of the background variability. To
isolate that added variance, we compute Sy ,r ≡ 〈yryr

T〉 and compute eigenvectors Ey ,r5

and eigenvalues Λy ,r.
We now define the precipitation pseudochannels

z ≡ yTEy ,r. (7)

Outside of precipitation, these pseudochannels still have zero mean and unit uncorre-
lated variance. For precipitating scenes, however, the added variability will have been10

pushed into the first few eigenvectors Ey ,r.
We may keep the first M elements of z so as to account for at least, say, 95 % of the

variance computed from the sums of the eigenvalues. The rest are discarded. For the
synthetic dataset discussed above, M = 1.

The first- and second-stage linear transformation may be combined to give15

z1...M = B(x− 〈x〉), (8)

where B is an M×N matrix of coefficients consistent with Eqs. (5) and (7). Note, by the
way, that for the present dataset, M = 1 and therefore B is a 1×N matrix or, equivalently,
a vector corresponding in direction to the third eigenvector of the complete dataset.
We could have arrived at B more directly in this particular case, but the dimensional20

reduction algorithm described above works well for higher-dimensional dataset, unlike
the case for conventional single-stage PCA, which provides no basis for assigning
eigenvectors to specific geophysical signatures.
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5 Bayesian retrieval in pseudochannel space

Using the pseudochannel transformations derived above, we may undertake Bayesian
retrievals in M-dimensional space rather than the original N-dimensional space. The
procedure is otherwise identical to that described in Sect. 3. For our synthetic database,
M = 1.5

Figure 5 depicts results of the algorithm applied to the dependent (TRAIN) data for
selected values of σ, analogous to Fig. 2 (note that values of σ here cannot be directly
compared with the values of σ for the 3-D retrievals, owing to the difference in scaling
of the observation vector). We see an increase in retrieval error with larger values of
σ, but the degradation is not nearly as severe as was the case for the original retrieval10

using three channels.
Figure 6 depicts results for the independent (VAL) data, analogous to Fig. 3. The

improvement relative to 3-D retrieval is striking. The match failure rate is extremely low
for all but the smallest values of σ, and the errors are generally small and unbiased.
For larger values of σ, there is a hint of underestimation at the low end of the scale15

owing to inclusion of nearby zero values.
Finally, Fig. 7 depicts the results obtained when an iterative increase in σ is used

to ensure that matches are found for all observations. These results may be directly
compared to the results of the same procedure applied to 3-D Bayesian retrievals in
Fig. 4. The improvement in retrieval performance is striking.20

6 Conclusions and discussion

Starting with an idealized synthetic database that loosely resembles 3-channel passive
microwave observations of precipitation against a highly variable background (e.g. het-
eregeneous land surfaces and/or land-water mixes), we examined the performance of
a conventional Bayesian retrieval algorithm that searched for matches in the full three-25

dimensional channel space. First we showed that even when the algorithm is applied
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to the dependent (TRAIN) data, performance suffers when the match criterion is too
loose (i.e. large σ). Conversely, when the same algorithm was applied to the indepen-
dent (VAL) dataset, the match failure rate was unacceptably high unless the match
criterion was loose.

The net result of both effects was that retrievals were quite poor for the independent5

data set, even when σ was iteratively adjusted, as shown in Fig. 4. Of course, the
need to use large σ to overcome a high match failure rate is a function of the size of
the dependent dataset. In the present demonstration, the TRAIN dataset consisted of
10 000 unique entries. If we were to employ a much larger database, the match failure
rate would go down, allowing smaller σ and presumably leading to improved overall10

performance.
But as one moves to more realistic retrieval problems employing more sensor chan-

nels – e.g. the nine channels of the TMI or the 13 channels of the GMI – the “curse of
dimensionality” (Bellman, 1961) greatly magnifies the size of the database required to
adequately populate the observation space and thus to ensure not only the existence15

of suitable matches for any given observation but also, it would be hoped, a statistically
representative distribution of such matches.

Of course it might be possible to reduce dimensionality in some cases by simply
throwing out channels that are deemed to provide little information. As clearly seen in
Fig. 1, this would not have been possible in the present demonstration. With higher-20

dimensional real satellite data, the decision as to which channels do or not contain
useful information is nontrivial and undoubtedly context-dependent.

To mitigate the problem of dimensionality in Bayesian retrievals, we described an
algorithm for objectively distilling the relevant information content from N channels into
a smaller number (M) pseudochannels while also regularizing the background (geo-25

physical plus instrument) noise component. In the present demonstration, M = 3 and
N = 1. In the application of this method to TMI data described by Petty and Li (2013),
M = 9 and N = 3.

2342

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/2327/2013/amtd-6-2327-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/2327/2013/amtd-6-2327-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 2327–2352, 2013

Dimensionality
reduction in Bayesian

estimation
algorithms

G. W. Petty

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Bayesian retrievals based on the single “pseudochannel” derived for the synthetic
dataset were shown to yield striking improvements in overall performance, as shown
in Fig. 7. These empirical results, more than any theoretical arguments, underline the
likely benefits of dimensional reduction in Bayesian retrievals relying on a database of
multichannel observations as a proxy for the prior joint and marginal PDFs.5

It must be reiterated that the details of the particular dimensional reduction method
given here depend on one being able to stratify the dependent dataset into two subsets:
one representing the “pure” background (e.g. rain-free or cloud-free), and the other
representing non-zero values of the variable to be retrieved (e.g. raining or cloudy). For
variables where this is not possible, another dimensional reduction algorithm would10

need to be employed; however, the benefits for Bayesian retrievals should be similar.
As discussed in the introduction, it might have been possible in principle to achieve

the same results for the 3-D channel-based retrieval as for the 1-D pseudochannel-
based retrieval, provided that an appropriate covariance matrix were specified for the
computation of the weights for candidate matches. In the present demonstration, the15

covariance in question would have corresponded to a match zone shaped like a highly
flattened spheroid oriented exactly parallel to the plane containing most of the back-
ground variability in Fig. 1. That is, channel variations orthogonal to the principal plane
of background variability would be given far greater weight than variations spectrally
consistent with the background variability. In short, the appropriate covariance would20

be non-diagonal, and retrieval performance would depend strongly on getting it exactly
right.

From our results and from the above considerations, we conjecture that a major
potential problem with conventional multichannel retrievals and assimilation schemes –
whether Bayesian or not – lies in the very common but often inappropriate assumption25

of diagonal error covariance. The dimensional reduction technique described herein
avoids this problem by, in effect, recasting the retrieval problem in a coordinate system
in which the desired covariance is (a) lower-dimensional, (b) diagonal, and (c) unit
magnitude.
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Fig. 1. Two-channel scatter plots of an idealized, stochastically generated database consisting
of three-channel “brightness temperatures”. Gray circular markers are used for “non-raining”
scenes; black crosses indicate “raining” scenes. While no separation between raining and non-
raining scenes is evident in these 2-D plots, there is in fact partial separation in three dimen-
sions.

2346

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/2327/2013/amtd-6-2327-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/2327/2013/amtd-6-2327-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 2327–2352, 2013

Dimensionality
reduction in Bayesian

estimation
algorithms

G. W. Petty

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2. Results of a Bayesian retrieval algorithm applied to the three-channel dependent
(TRAIN) dataset for four different values of the error parameter σ.

2347

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/2327/2013/amtd-6-2327-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/2327/2013/amtd-6-2327-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 2327–2352, 2013

Dimensionality
reduction in Bayesian

estimation
algorithms

G. W. Petty

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. Same as Fig. 2, but the Bayesian algorithm is applied to the independent (VAL) dataset.
Also indicated is the percentage of “observations” for which no match could be found for the
given value of σ.
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Fig. 4. Results of the Bayesian algorithm applied to the independent (VAL) dataset, using iter-
ative doubling of σ to ensure that matches are found for all “observations”.
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Fig. 5. Similar to Fig. 2, but the Bayesian retrieval applied to the dependent (TRAIN) dataset
is based on a one-dimensional “pseudochannel” rather than the original three-dimensional
“brightness temperatures”.
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Fig. 6. Same as Fig. 5, but the Bayesian 1-D retrieval is applied to the independent (VAL) data.
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Fig. 7. Results of the 1-D Bayesian algorithm applied to the independent (VAL) dataset, using
iterative doubling of σ to ensure that matches are found for all “observations”. Compare with
the 3-D retrievals depicted in Fig. 4.
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